Abstract
BackgroundThe implementation of universal screening for Gestational Diabetes Mellitus (GDM) is challenged by several factors key amongst which is limited resources, hence the continued reliance on risk factor-based screening. Effective identification of high-risk women early in pregnancy may enable preventive intervention. This study aimed at developing a GDM prediction model based on maternal clinical risk factors that are easily assessable in the first trimester of pregnancy in a population of Nigerian women.MethodsThis was a multi-hospital prospective observational cohort study of 253 consecutively selected pregnant women from which maternal clinical data was collected at 8–12 weeks gestational age. Diagnosis of GDM was made via a one-step 75-gram Oral Glucose Tolerance Test (OGTT) at 24–28 weeks of gestation. A GDM prediction model and nomogram based on selected maternal clinical risk factors was developed using multiple logistic regression analysis, and its performance was assessed by Receiver Operator Curve (ROC) analysis. Data analysis was carried out using Statistical Package for Social Sciences (SPSS) version 25 and Python programming language (version 3.0).ResultsIncreasing maternal age, higher body mass index (BMI), a family history of diabetes mellitus in first-degree relative and previous history of foetal macrosomia were the major predictors of GDM. The model equation was: LogitP = 6.358 − 0.066 × Age − 0.075 × First trimester BMI − 1.879 × First-degree relative with diabetes mellitus − 0.522 × History of foetal macrosomia. It had an area under the receiver operator characteristic (ROC) curve (AUC) of 0.814 (95% CI: 0.751–0.877; p-value < 0.001), and at a predicted probability threshold of 0.745, it had a sensitivity of 79.2% and specificity of 74.5%.ConclusionThis first trimester prediction model reliably identifies women at high risk for GDM development in the first trimester, and the nomogram enhances its practical applicability, contributing to improved clinical outcomes in the study population.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.