Abstract

While numerous oxide additives have traditionally been employed to enhance the radiation shielding capabilities of glasses, the unique attributes of high-entropy oxides (HEOs), a group of materials acclaimed in contemporary material science for their distinctive properties have remained unexamined in this specific area. This novel study explores the enhancement of radiation shielding properties in zinc-tellurite glasses through the integration of TiNbWMoZrOx High Entropy Oxides (HEO). Utilizing advanced synthesis techniques, including mechanical alloying and oxidation, the research successfully incorporates HEOs into glass matrices, aiming to improve gamma-ray and neutron attenuation. Characterization through X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) confirms the uniform distribution and structural integrity of the HEOs within the glasses. The synthesis of glass samples with a base structure suitable for the molar composition of 25ZnO.75TeO2 (mol%) and glass samples doped with TiNbWMoZrOx (HEO) was carried out using the traditional high-temperature melting and annealing method. The outcomes demonstrate a concentration-dependent increase in shielding efficacy, particularly highlighting the superior performance of glasses doped with 4 mol% of TiNbWMoZrOx (HEC2–4), which exhibit significantly enhanced mass attenuation coefficients, lower half-value layers, and higher effective atomic numbers. This indicates the effective role of HEOs in boosting radiation protection capabilities. Comparative analysis with traditional shielding materials showcases the HEC2–4 glasses' competitive advantage, underlining their potential as a versatile shielding solution. It can be concluded that incorporating TiNbWMoZrOx high entropy oxides into zinc-tellurite glasses significantly augments their radiation shielding properties, offering a novel approach for enhancing protection against gamma-ray and neutron in various applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.