Abstract

The crystal structures, electro–optical properties, and charge carrier effective masses of Cs2TeW3O12 and Cs2TeMo3O12 with hexagonal, polar and non–centrosymmetric crystal structure were investigated based on density functional theory. Cs2TeW3O12 and Cs2TeMo3O12 are found to be indirect K (1/3, 1/3, 0) → G (0, 0, 0) band gap semiconductors (Eg > 3eV) with small effective masses of photogenerated charge carriers. The mixing of octahedrally coordinated d° transition metal cations (W6+ and Mo6+) with the filled p orbitals of the oxygen ligands leads to the formation of some W5+/Mo5+ sites and splitting of d orbitals into the partially filled t2g (dxy, dyz, and dzx) orbitals and empty eg (dz2 and dx2–y2) orbitals. The top of the valence bond is mainly contributed by O 2p orbital of the oxygen ligands mixed with the partially filled t2g orbitals of W 5d/Mo 4d, while the conduction band mainly consists of empty eg orbitals of W 5d/Mo 4d with a little contribution of O 2p orbitals. The dielectric function exhibits a slight anisotropic behavior and optical absorption peak for Cs2TeW3O12 and Cs2TeMo3O12 belonging to the strong electronic transition O 2p → W 5d/Mo 4d within the octahedral units. According to the estimated valence band and conduction band edges, Cs2TeW3O12 and Cs2TeMo3O12 can be applied as visible−light−responsive photocatalysts for the decomposition of organic pollutants and dye molecules. Also, Cs2TeMo3O12 can be used in water splitting for hydrogen generation but Cs2TeW3O12 requires further experimental studies to confirm its ability for water splitting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call