Abstract

Regulating the spin states of catalysts to enhance activity is fascinating but challenging. Herein, by using first-principles calculations, single transition-metal (TM) atoms Mo, Re, and Os embedded in nitrogen vacancy of the MoSi2N4 monolayer (TM1/VN-MoSi2N4) were screened out as potential catalysts for electrochemical nitrogen reduction reaction to ammonia. Our findings suggest that the spin states of these active centers can be precisely and gradually tuned through a simple doping strategy. Additionally, doping one O atom into the Mo1/VN-MoSi2N4 system as an example significantly improves catalytic activity. The spin state of Mo1 transitions from high to intermediate while simultaneously breaking the C3v symmetry of the supported atom. These factors synergistically lead to better orbital overlap between the catalyst and intermediates, facilitating subsequent protonation processes and overall catalytic activity. This work provides novel insight into designing, precisely controlling, and revisiting the spin-related catalytic performance in heterogeneous catalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.