Abstract

The adsorption of isolated Pd atoms on the (1 1 0) surface of rutile TiO2 was investigated through ab initio embedded-cluster calculations performed at the Hartree–Fock, second-order Moller–Plesset and Becke's three parameter hybrid method with the Lee–Yang–Parr correlation functional levels. The role played by the magnitude of the surrounding charges used in the embedding procedure was carefully analyzed. The most stable site for adsorption consisted of a fourfold hollow site in which the Pd atom was coordinated to a fivefold Ti atom, two basal oxygens, and a protruding oxygen atom. However, the adsorption energies computed after basis set superposition error corrections seemed to favor a bridge site in which the Pd atom binds two protruding oxygen atoms. A periodic slab calculation using gradient-corrected functionals and plane-wave basis sets confirmed that for full coverage, the hollow site was more stable, although Pd displacement along the fivefold Ti channels was almost free. These results agree with the experimental data obtained from scanning tunneling microscopy. Finally, the adsorption energy computed from the periodic calculations was found to be 1.88 eV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call