Abstract

Doping anions into LiFePO4 can improve the electrochemical performance of lithium-ion batteries. In this study, structures, electronic properties and Li-ion migration of anion (F- , Cl- , and S2- ) doping into LiFePO4 were systematically investigated by means of density functional theory calculations. Anion substitution for oxygen atoms leads to an expansion of the LiFePO4 lattice, significantly facilitating Li-ion diffusion. For Cl- and F- anion doped into LiFePO4 , the energy barrier of Li-ion migration gets lowered to 0.209 eV and 0.283 eV from 0.572 eV. The introduction of anions narrows the forbidden band of LiFePO4 , enhancing its electronic conductivity. This work pays a way towards the rational design of high-performance lithium-ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.