Abstract

We propose a first-principles approach for treating the unstable vibrational mode of transition states in solid-state diffusion. It allows one to determine a number of fundamental quantities associated with the transition state, in particular the enthalpy and entropy of migration and the characteristic vibrational frequency, along with their temperature dependences. Application to pure face centered cubic Al shows good agreement with available experimental measurements and previous theoretical calculations. The procedure is further applied in calculations of the migration properties of Mg, Si and Cu impurities in Al, and the differences among Mg, Si and Cu are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.