Abstract

Abstract We present the first ab initio simulation of a radiation-mediated shock emerging at the photosphere of a relativistic outflow. The simulation is performed using our code radshock that follows fluid dynamics coupled to time-dependent radiative transfer, calculated with the Monte-Carlo method. We use the code to examine the radiative blast wave emerging from neutron star merger GW170817. It was previously proposed that the merger ejected a dark, relativistically expanding, homologous envelope, and then an explosion inside the envelope produced the observed gamma-ray burst GRB 170817A. Our simulation demonstrates how the shock wave generates radiation as it propagates through the envelope, approaches its photosphere, releases the radiation, and collapses, splitting into two collisionless shocks of a microscopic thickness. We find the light curve and the spectral evolution of the produced gamma-ray burst; both are similar to the observed GRB 170817A.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.