Abstract

The probability of the first entrance to the negative semi-axis for a one-dimensional discrete Ornstein–Uhlenbeck (O-U) process is studied in this work. The discrete O-U process is a simple generalization of the random walk and many of its statistics may be calculated using essentially the same formalism. In particular, the case in which Sparre-Andersen's theorem applies for normal random walks is considered, and it is shown that the universal features of the first passage probability do not extend to the discrete O-U process. Finally, an explicit expression for the generating function of the probability of first entrance to the negative real axis at step n is calculated and analysed for a particular choice of the step distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.