Abstract

We present a first-order nonhomogeneous Markov model for the interspike-interval density of a continuously stimulated spiking neuron. The model allows the conditional interspike-interval density and the stationary interspike-interval density to be expressed as products of two separate functions, one of which describes only the neuron characteristics and the other of which describes only the signal characteristics. The approximation shows particularly clearly that signal autocorrelations and cross-correlations arise as natural features of the interspike-interval density and are particularly clear for small signals and moderate noise. We show that this model simplifies the design of spiking neuron cross-correlation systems and describe a four-neuron mutual inhibition network that generates a cross-correlation output for two input signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.