Abstract
In a companion paper, we studied a control problem related to swing option pricing in a general non‐Markovian setting. The main result there shows that the value process of this control problem can uniquely be characterized in terms of a first‐order backward stochastic partial differential equation (BSPDE) and a pathwise differential inclusion. In this paper, we additionally assume that the cash flow process of the swing option is left‐continuous in expectation. Under this assumption, we show that the value process is continuously differentiable in the space variable that represents the volume in which the holder of the option can still exercise until maturity. This gives rise to an existence and uniqueness result for the corresponding BSPDE in a classical sense. We also explicitly represent the space derivative of the value process in terms of a nonstandard optimal stopping problem over a subset of predictable stopping times. This representation can be applied to derive a dual minimization problem in terms of martingales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.