Abstract

The lack of watershed-scale estimates of floodplain carbon stocks limits recognition of the important role of floodplains and river corridor restoration in efforts to enhance carbon sequestration. We use the South Platte River watershed of Colorado, USA as a case study to illustrate spatial patterns of, and controls on, floodplain carbon stocks at the watershed scale. This case study illustrates the disproportionate importance of floodplains for soil carbon stocks relative to adjacent uplands and provides an example of how spatially explicit data can be used to prioritize floodplain restoration with regard to carbon sequestration. We use the hydrogeomorphic floodplain tool GFPLAIN to delineate the extent of 100-year floodplains in the South Platte River watershed. We distinguish elevation bands for the steppe, montane, subalpine, and alpine zones. We also differentiate bead (floodplain width/channel width ≄ 5) and string (floodplain width/channel width < 5) reaches within the montane and subalpine zones. Drawing on prior, field-based measurements of organic carbon stock in downed, dead wood and soil in these floodplain types, we estimate total floodplain organic carbon stock based on median values of stock in different floodplain types and the spatial extent of these floodplain types. This estimate includes organic carbon stocks in lake and reservoir sediments in the watershed. Soil constitutes the greatest reservoir of floodplain carbon. The total estimated area of floodplain is 2916 km2, which is 4.3 % of the total watershed area of the South Platte River. Our preferred estimate is 42.7 Tg C stock (likely range of 39.1–42.7 Tg). This equates to 11.1 % of a previously estimated overall carbon stock (above and belowground biomass and soil organic carbon) in the entire watershed of 384 Tg C. Floodplains are thus disproportionately important, relative to their surface area, in storing organic carbon in this semiarid watershed. Field measurements of floodplain soil organic carbon stocks from across the globe indicate that this finding is not unique to this watershed, with implications for prioritizing floodplain management and restoration as a means of enhancing carbon sequestration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call