Abstract

Wind-driven dust emission from dry, exposed land surfaces plays an important role in the climate system, and also contributes to severe weather and public health hazards around the world. In the past several years, the Northern Hemisphere midlatitude region was stuck by several extreme dust storms with severe socioeconomic and environment consequences within and beyond the dryland source areas. For instance, the 26-27 May 2018 salt storm from the dried-up Aral Sea was considered a first-of-its-kind ecological catastrophe over Central Asia. In March 2021, northern China was hit by the worst sand storm in a decade. Later in November, Uzbekistan recorded the worst dust storm through the country’s meteorological record. Currently, significant knowledge and methodological gaps exist in characterizing the multivariate compound dust events. This study is a first attempt to develop a multivariate approach and ground-based climatology to improve our knowledge of the historical variations, spatial distributions, and governing factors of extreme dust outbreaks over the drylands of Central and East Asia. Detailed case studies will also be conducted to elucidate the role of tropic Pacific and Arctic warming and Rossby wave activities in triggering recent extreme dust events.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call