Abstract
Although it is well known that Bernoulli's equation is obtained as the first integral of Euler's equations in the absence of vorticity and that in the case of non-vanishing vorticity a first integral of them can be found using the Clebsch transformation for inviscid flow, generalization of the procedure for viscous flow has remained elusive. Accordingly, in this paper, a first integral of the Navier–Stokes equations for steady flow is constructed. In the case of a two-dimensional flow, this is made possible by formulating the governing equations in terms of complex variables and introducing a new scalar potential. Associated boundary conditions are considered, and an extension of the theory to three dimensions is proposed. The capabilities of the new approach are demonstrated by calculating a Reynolds number correction to the laminar shear flow generated in the narrow gap between a flat moving and a stationary wavy wall, as is often encountered in lubrication problems. It highlights the first integral as a suitable tool for the development of new analytical and numerical methods in fluid dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.