Abstract

To date, no experimental data has been reported for the metallome of hyperthermophilic microorganisms although their metal requirements for growth are known to be unique. Here, experiments were conducted to determine (i) cellular trace metal concentrations of the hyperthermophilic Archaea Methanococcus jannaschii and Pyrococcus furiosus, and (ii) a first estimate of the metallome for these hyperthermophilic species via ICP-MS. The metal contents of these cells were compared to parallel experiments using the mesophilic bacterium Escherichia coli grown under aerobic and anaerobic conditions. Fe and Zn were typically the most abundant metals in cells. Metal concentrations for E. coli grown aerobically decreased in the order Fe > Zn > Cu > Mo > Ni > W > Co. In contrast, M. jannaschii and P. furiosus show almost the reverse pattern with elevated Ni, Co, and W concentrations. Of the three organisms, a biosignature is potentially demonstrated for the methanogen M. jannaschii that may, in part, be related to the metallome requirements of methanogenesis. The bioavailability of trace metals more than likely has varied through time. If hyperthermophiles are very ancient, then the trace metal patterns observed here may begin to provide some insights regarding Earth's earliest cells and in turn, early Earth chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.