Abstract

In this paper, a class of linear systems subject to process disturbances and structured measurement disturbances with unknown time-varying covariances is considered. First, we construct a finite-horizon filter structure to recursively obtain a suit of positive definite matrices and propose the sufficient conditions to ensure the above positive definite matrices to be upper bounds of the unknown covariances of the state estimation errors, filtering residuals and state prediction errors. Then some parameters are directly determined through simultaneously minimizing such upper bounds, while the other parameters are obtained via optimization through minimizing the upper bound of the covariances of filtering residuals. Furthermore, the parameter optimization is transformed into a convex optimization problem, which can be effectively solved by use of linear matrix inequality (LMI). Hence a finite-horizon adaptive Kalman filter (FHAKF) is proposed. The simulation study is about the joint time-varying time delay and parameter estimation of a nonlinear stochastic system with sensors subject to disturbances with unknown covariances, which shows that the proposed FHAKF has excellent performance and reveals the robustness of the FHAKF against the a priori filter parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.