Abstract

The aim of this paper is to introduce an approach to the (strong) Novikov conjecture based on continuous families of finite dimensional representations: this is partly inspired by ideas of Lusztig using the Atiyah-Singer families index theorem, and partly by Carlsson's deformation $K$--theory. Using this approach, we give new proofs of the strong Novikov conjecture in several interesting cases, including crystallographic groups and surface groups. The method presented here is relatively accessible compared with other proofs of the Novikov conjecture, and also yields some information about the $K$--theory and cohomology of representation spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.