Abstract
AbstractThis paper describes the numerical solution of the 1D shallow‐water equations by a finite volume scheme based on the Roe solver. In the first part, the 1D shallow‐water equations are presented. These equations model the free‐surface flows in a river. This set of equations is widely used for applications: dam‐break waves, reservoir emptying, flooding, etc. The main feature of these equations is the presence of a non‐conservative term in the momentum equation in the case of an actual river. In order to apply schemes well adapted to conservative equations, this term is split in two terms: a conservative one which is kept on the left‐hand side of the equation of momentum and the non‐conservative part is introduced as a source term on the right‐hand side. In the second section, we describe the scheme based on a Roe Solver for the homogeneous problem. Next, the numerical treatment of the source term which is the essential point of the numerical modelisation is described. The source term is split in two components: one is upwinded and the other is treated according to a centred discretization. By using this method for the discretization of the source term, one gets the right behaviour for steady flow. Finally, in the last part, the problem of validation is tackled. Most of the numerical tests have been defined for a working group about dam‐break wave simulation. A real dam‐break wave simulation will be shown. Copyright © 2002 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Fluids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.