Abstract

The stochastic integrate and fire neuron is one of the most commonly used stochastic models in neuroscience. Although some cases are analytically tractable, a full analysis typically calls for numerical simulations. We present a fast and accurate finite volume method to approximate the solution of the associated Fokker-Planck equation. The discretization of the boundary conditions offers a particular challenge, as standard operator splitting approaches cannot be applied without modification. We demonstrate the method using stationary and time dependent inputs, and compare them with Monte Carlo simulations. Such simulations are relatively easy to implement, but can suffer from convergence difficulties and long run times. In comparison, our method offers improved accuracy, and decreases computation times by several orders of magnitude. The method can easily be extended to two and three dimensional Fokker-Planck equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.