Abstract

In this paper, we design, analyze and numerically validate energy dissipating finite volume schemes for a competition-mutation equation with a gradient flow structure. The model describes the evolution of a population structured with respect to a continuous trait. Both semi-discrete and fully discrete schemes are demonstrated to satisfy the two desired properties: positivity of numerical solutions and energy dissipation. These ensure that the positive steady state is asymptotically stable. Moreover, the discrete steady state is proven to be the same as the minimizer of a discrete energy function. As a comparison, the positive steady state can also be produced by a nonlinear programming solver. Finally, a series of numerical tests is provided to demonstrate both accuracy and the energy dissipation property of the numerical schemes. The numerical solutions of the model with small mutation are shown to be close to those of the corresponding model with linear competition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.