Abstract

This study proposes a numerical model for depth-averaged Reynolds equations (shallow-water equations) to investigate a dam-break problem, based upon a two-dimensional (2D) second-order upwind cell-centre finite volume method. The transportation terms were modelled using a modified approximate HLLC Riemann solver with the first-order accuracy. The proposed 2D model was assessed and validated through experimental data and analytical solutions for several dam-break cases on a wet and dry bed. The results showed that the error values of the model are lower than those of existing numerical methods at different points. Our findings also revealed that the dimensionless error parameters decrease as the wave propagates downstream. In general, the new model can model the dam-break problem and captures the shock wave superbly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.