Abstract

A rigorous thermohydrodynamic (THD) analysis of finite journal bearings has been developed. THD analysis not only allows a more accurate prediction of the bearing performance characteristics, but it also provides the temperature distribution in the bearing. It involves the simultaneous solution of the Reynolds and energy equations and can handle a wide variety of flow situations, including reverse flow, recirculating flow, and cavitation. The overall numerical scheme is based on a fully conservative finite-volume formulation. The calculated results are compared with the published literature. The qualitative agreement is good. Sample calculations for a typical automotive bearing show that the oil supply pressure and supply configuration significantly affect the bearing performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.