Abstract

In this paper, a finite-time convergent Zhang neural network (ZNN) is proposed and studied for matrix square root finding. Compared to the original ZNN (OZNN) model, the finite-time convergent ZNN (FTCZNN) model fully utilizes a nonlinearly activated sign-bi-power function, and thus possesses faster convergence ability. In addition, the upper bound of convergence time for the FTCZNN model is theoretically derived and estimated by solving differential inequalities. Simulative comparisons are further conducted between the OZNN model and the FTCZNN model under the same conditions. The results validate the effectiveness and superiority of the FTCZNN model for matrix square root finding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.