Abstract
We investigate the effects of a finite volume extension for nucleons immersed in nuclear matter. We wish in this way to explore the role played by this non-vanishing (but fixed) volume in shaping nuclear matter properties, in contrast with other models of nuclear physics in which nucleons are treated as point-like particles. We introduce a model characterized by an exclusion volume à la Van der Waals, as well as an effective non-relativistic approximation to model meson-exchange interactions between nucleons. The model is consistent with experimental values of saturation density and binding energy of nuclear matter in the domain of typical densities for neutron stars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.