Abstract
We construct a connected finite loop space of rank 66 and dimension 1254 whose rational cohomology is not isomorphic as a graded vector space to the rational cohomology of any compact Lie group, hence providing a counterexample to a classical conjecture. Aided by machine calculation we verify that our counterexample is minimal, i.e., that any finite loop space of rank less than 66 is in fact rationally equivalent to a compact Lie group, extending the classical known bound of 5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.