Abstract

The purpose of this paper is to present an iterative algorithm for solving the general discrete-time periodic Sylvester matrix equations. It is proved by theoretical analysis that this algorithm can get the exact solutions of the periodic Sylvester matrix equations in a finite number of steps in the absence of round-off errors. Furthermore, when the discrete-time periodic Sylvester matrix equations are consistent, we can obtain its unique minimal Frobenius norm solution by choosing appropriate initial periodic matrices. Finally, we use some numerical examples to illustrate the effectiveness of the proposed algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call