Abstract

A finite interval of initial swimbladder inflation in striped trumpeter Latris lineata larvae occurred over 4 days at 16° C. Water‐surface films were removed on different days to form treatments: 4, 8, 9, 10, 11 and 12 days post hatching, dph (day 4, 8, 9, 10, 11 and 12 treatments, respectively). No swimbladder inflation was recorded prior to water‐surface film removal. When the water‐surface films were removed in day 4 and 8 treatments, initial swimbladder inflation was first recorded in larvae 9 dph at mean ± s.e. 35·0 ± 5·4%(n = 4) and 45·0 ± 7·9%, respectively. Water‐surface film removal at days 9, 10 and 11, resulted in initial swimbladder inflation the following day at 62·5 ± 2·5, 62·5 ± 7·2 and 11·3 ± 5·5% in larvae 10, 11 and 12 dph, respectively. No swimbladder inflation was recorded following water‐surface film removal on day 12. There was no significant difference in initial inflation among larvae in day 4, 8, 9 and 10 treatments, ranging from 65·0 ± 4·1 to 73·8 ± 6·9%(P > 0·05). Initial inflation was significantly lower in the day 11 treatment (11·3 ± 5·5%)(P < 0·05). During the inflation interval (9–12 dph) swimbladders displayed one of three morphologies; liquid dilation, gas inflated and collapsed. Collapse of the swimbladder lumen was first apparent in larvae without swimbladder inflation from 11 dph and progressively developed thereafter in all larvae with non‐inflated swimbladders. Larvae >6·1 mm standard length lost the ability to undergo initial swimbladder inflation. This study demonstrates that the interval for initial swimbladder inflation in striped trumpeter is short, finite and related to larval size. The end of the inflation interval was marked by onset of abnormal swimbladder morphologies, but not to closure of the pneumatic duct.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call