Abstract
The trace over the degrees of freedom located in a subset of the space transforms the vacuum state into a mixed density matrix with nonzero entropy. This is usually called entanglement entropy, and it is known to be divergent in quantum field theory (QFT). However, it is possible to define a finite quantity F(A,B) for two given different subsets A and B which measures the degree of entanglement between their respective degrees of freedom. We show that the function F(A,B) is severely constrained by the Poincaré symmetry and the mathematical properties of the entropy. In particular, for one component sets in two-dimensional conformal field theories its general form is completely determined. Moreover, it allows to prove an alternative entropic version of the c-theorem for (1+1)-dimensional QFT. We propose this well-defined quantity as the meaningfull entanglement entropy and comment on possible applications in QFT and the black hole evaporation problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.