Abstract
We consider a time‐dependent and a steady linear convection‐diffusion‐reaction equation whose coefficients are nonconstant. Boundary conditions are mixed (Dirichlet and Robin–Neumann) and nonhomogeneous. Both the unsteady and the steady problem are approximately solved by a combined finite element–finite volume method: the diffusion term is discretized by Crouzeix–Raviart piecewise linear finite elements on a triangular grid, and the convection term by upwind barycentric finite volumes. In the unsteady case, the implicit Euler method is used as time discretization. The ‐ and the ‐error in the unsteady case and the H1‐error in the steady one are estimated against the data, in such a way that no parameter enters exponentially into the constants involved. © 2016Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1591–1621, 2016
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.