Abstract

In this article, the free vibration behaviour of circular and annular magneto-electro-elastic plates has been investigated under the framework of higher order shear deformation theory. The three-dimensional finite element formulation has been derived with the aid of Hamilton’s principle by taking into account the coupling between elastic, electric and magnetic properties. The equations of motion are solved using condensation technique. Furthermore, the credibility of proposed finite element formulation has been validated using COMSOL software and also by comparing the results with previously published articles. Special attention has also been paid to assess the influence of parameters such as coupling effect, stacking sequences and inner-to-outer diameter ratio. The numerical results reveal that the coupled natural frequencies of the annular magneto-electro-elastic plates vary significantly with the circular hole dimensions incorporated. The circular and annular plates are considered as one of the prominent structural components in various engineering and industrial application. Therefore, the proposed finite element formulation and the results presented in this article can serve as benchmark solutions for the design and analysis of smart sensors and actuators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.