Abstract

A finite element suite for robust and reliable deformation analysis of aeroelastic composite lifting surfaces is presented. The suite consists of a natural-mode finite element solver, an adaptive mesh generator, an interface for communication with external aerodynamic codes and an auxiliary program for defining material properties. With the aim of reducing the computational time of the finite element analysis within an iterative coupled aero-structure analysis, the aerodynamic and structural characteristics of the aeroelastic composite surface are directly incorporated in the mesh generation procedure. This is realized by utilizing an anisotropic mesh density function. It has been shown that a mesh generated based on the presented theory has significant effect on improving the efficiency and the performance of coupled aero-structure analysis of aeroelastic lifting surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.