Abstract

This study aimed to evaluate the risk of bone loss around single short molar crown-supporting implants in an atrophic mandible. Implants of different lengths (L = 4 or 6 mm) and diameters (Ø = 4.1 or 4.8 mm) were placed in the molar area of an atrophic mandible. Additional control mandible models were simulated for 4.1 mm diameter implants (L = 4, 6, 8, and 10 mm). A vertical masticatory load of 200 N was applied to three or six occlusal contact areas (3ca or 6ca) of the prosthetic crown. The bone strain energy density (SED) of 109.6 µJ/mm3 was assumed to be the pathological threshold for cortical bone. The peri-implant bone resorption risk index (PIBRri) was calculated by dividing the maximum SED of the crestal cortical bone by the SED pathological threshold. Increasing the implant length from 4 to 6 mm, implant diameter from 4.1 to 4.8 mm, and number of contact areas from 3 to 6 reduced the SED and PIBRri values by approximately 20%, 35%, and 40%, respectively, when comparing pairs of models that isolated a specific variable. All models with 6ca had a low bone resorption risk (PIBRri<0.8), while the Ø4.1 short implant with 3ca had a medium (0.8≤PIBRri≤1.0) or high (PIBRri>1.0) resorption risk. Increasing the diameter or occlusal contact area of a 4 mm short implant in an atrophic mandible resulted in reduced bone resorption risks, similar to or lower than those observed in a regular mandible with standard-length implants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call