Abstract
A previous study investigated a number of invariant-based orthotropic and transversely isotropic constitutive equations for their suitability to fit three-dimensional simple shear mechanics data of passive myocardial tissue. The study was based on the assumption of a homogeneous deformation. Here, we extend the previous study by performing an inverse finite element material parameter estimation. This ensures a more realistic deformation state and material parameter estimates. The constitutive relations were compared on the basis of (i) ‘goodness of fit’: how well they fit a set of six shear deformation tests and (ii) ‘variability’: how well determined the material parameters are over the range of experiments. These criteria were utilised to discuss the advantages and disadvantages of the constitutive relations. It was found that a specific form of the polyconvex type as well as the exponential Fung-type equations were most suitable for modelling the orthotropic behaviour of myocardium under simple shear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Biomechanics and Biomedical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.