Abstract

The presented work describes firstly the wear and crack initiation mechanism using metallographic investigations of deformed surfaces by rolling sliding wheel/rail contact. Secondly, a multi-scale finite element model is presented which allows the simulation of the deformation process near the surface of a rail under rolling sliding contact. It is necessary to model the roughness of the surfaces of wheel and rail to obtain a realistic deformation state which is comparable to experiments. Furthermore, the realistic stick-slip behaviour of a rolling sliding wheel along a rail is considered. Regarding these aspects of wheel/rail contact a realistic deformation picture with near quantitative amounts of plastic shear strains from micrometre to millimetre range can be predicted. The numerical results obtained using the multi-scale model can be compared to metallographic observations and deliver a satisfying match.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.