Abstract
Encouraged by recent advances of biophysical and biochemical assays we introduce a 3D finite element model of an osteoblast, seeking an analogue between exogenous forces and intracellularly activated sensory mechanisms. The cell was reverse engineered and the dimensions of the internal cellular structures were based on literature data. The model was verified and validated against atomic force microscopy experiments and four loading scenarios were considered. The stress distributions developing on the main cellular components were calculated along with their corresponding strain values. The nucleus and mitochondria exhibited similar loading trends, with the mitochondria being stressed by an order of magnitude higher than the nucleus (e.g. 1.4 vs. 0.16 MPa). Equivalent stiffness was determined to increase by almost 50%, from the apex to the cell's periphery, as was the cell's elasticity, which was lowest when the load was exerted directly above the nucleus. The assessment of how extrinsic loads are propagated to a cell's internal structures is inherently a problem of high complexity. The findings presented in this study can provide important insight into biophysical and biochemical responses elicited in cells through mechanical stimulus. This was evident in both the nuclear and mitochondrial loading and would stipulate the important contribution of even more accurate models in the interpretation of cellular events.One Sentence Summary: The results of this numerical biomechanical study demonstrated that even minor extrinsic loads irrespective of the application site, are transduced by a fraction of the cytoskeleton to its internal structure (primarily to its mitochondria and secondary to the cell's nucleus), indicating mechanical stimulus as the dominant pathway to cell expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.