Abstract

‘In this paper, a finite element method is presented to approximate Maxwell–Polynomial Chaos(PC) Debye model in two spatial dimensions. The existence and uniqueness of the weak solutions are presented firstly according with the differential equations by using the Laplace transform. Then the property of energy decay with respect to the time is derived. Next, the lowest Nédélec–Raviart–Thomas element is chosen in spatial discrete scheme and the Crank–Nicolson scheme is employed in time discrete scheme. The stability of full-discrete scheme is explored before an error estimate of accuracy O(Δt2+h) is proved under the L2−norm. Numerical experiment is demonstrated for showing the correctness of the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.