Abstract

Computational fluid mechanics techniques for examining free surface problems in two-dimensional form are now well established. Extending these methods to three dimensions requires a reconsideration of some of the difficult issues from two-dimensional problems as well as developing new formulations to handle added geometric complexity. This paper presents a new finite element formulation for handling three-dimensional free surface problems with a boundary-fitted mesh and full Newton iteration, which solves for velocity, pressure, and mesh variables simultaneously. A boundary-fitted, pseudo-solid approach is used for moving the mesh, which treats the interior of the mesh as a fictitious elastic solid that deforms in response to boundary motion. To minimize mesh distortion near free boundary under large deformations, the mesh motion equations are rotated into normal and tangential components prior to applying boundary conditions. The Navier–Stokes equations are discretized using a Galerkin–least square/pressure stabilization formulation, which provides good convergence properties with iterative solvers. The result is a method that can track large deformations and rotations of free surface boundaries in three dimensions. The method is applied to two sample problems: solid body rotation of a fluid and extrusion from a nozzle with a rectangular cross-section. The extrusion example exhibits a variety of free surface shapes that arise from changing processing conditions. Copyright © 2000 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.