Abstract

Abstract Convergence of a finite element method with mass-lumping and flux upwinding is formulated for solving the immiscible two-phase flow problem in porous media. The method approximates directly the wetting phase pressure and saturation, which are the primary unknowns. Well-posedness is obtained in [J. Numer. Math., 29(2), 2021]. Theoretical convergence is proved via a compactness argument. The numerical phase saturation converges strongly to a weak solution in L 2 in space and in time whereas the numerical phase pressures converge strongly to weak solutions in L 2 in space almost everywhere in time. The proof is not straightforward because of the degeneracy of the phase mobilities and the unboundedness of the derivative of the capillary pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.