Abstract
The aim of this paper is to investigate how nonlinear flame models influence the bifurcation process that characterize the transition to self-sustained thermo-acoustic pressure oscillations in gas turbine combustors. The analysis is carried out by means of a Finite Element Method solver able to treat complex combustor systems with multiple burners. The heat release fluctuations are coupled to the velocity fluctuations in the burner by means of nonlinear dependence. Two polynomial expressions of the third and of the fifth order are respectively considered. At first the proposed numerical procedure is validated in a longitudinal configuration against analytical results obtained in a low-order framework. Then, the ability of the proposed numerical approach to treat combustion systems with multiple independent flames is verified on an annular configuration equipped with twelve burners. In both configurations, in order to track bifurcation diagrams, the amplitudes of velocity fluctuations at limit cycles are plotted against the acoustic-combustion interaction index n considered as a control parameter. Regardless of the configuration, supercritical and subcritical bifurcations are obtained depending of the chosen flame model. The influence of time delay and acoustic damping is also investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.