Abstract

We develop a novel finite element method for a phase field model of nematic liquid crystal droplets. The continuous model considers a free energy comprised of three components: the Ericksen's energy for liquid crystals, the Cahn-Hilliard energy representing the interfacial energy of the droplet, and a weak anchoring energy representing the interaction of the liquid crystal molecules with the surface tension on the interface (i.e. anisotropic surface tension). Applications of the model are for finding minimizers of the free energy and exploring gradient flow dynamics. We present a finite element method that utilizes a special discretization of the liquid crystal elastic energy, as well as mass-lumping to discretize the coupling terms for the anisotropic surface tension part. Next, we present a discrete gradient flow method and show that it is monotone energy decreasing. Furthermore, we show that global discrete energy minimizers $\Gamma$-converge to global minimizers of the continuous energy. We conclude with numerical experiments illustrating different gradient flow dynamics, including droplet coalescence and break-up.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.