Abstract

The parametrization of shell structures using the so-called solid shell concept has been widely exploited in the last decades. This trend is mainly attributed to the relatively simple kinematic treatment of solid shells in the corresponding finite element formulation in conjunction with the use of unmodified three-dimensional material laws, among other aspects. In the present investigation, we provide a comprehensive finite element implementation of solid shells incorporating: (i) the use of Enhanced Assumed Strain (EAS) and the Assumed Natural Strain (ANS) methods to prevent locking issues, (ii) the phase-field approach for triggering fracture events, and (iii) some representative inelastic material models. The current modular implementation has been integrated into the FE package ABAQUS via the user-defined routine UEL. Several representative examples demonstrate the applicability of the present formulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.