Abstract

We describe discretisations of the shallow-water equations on the sphere using the framework of finite element exterior calculus, which are extensions of the mimetic finite difference framework presented in Ringler (2010) [11]. The exterior calculus notation provides a guide to which finite element spaces should be used for which physical variables, and unifies a number of desirable properties. We present two formulations: a “primal” formulation in which the finite element spaces are defined on a single mesh, and a “primal–dual” formulation in which finite element spaces on a dual mesh are also used. Both formulations have velocity and layer depth as prognostic variables, but the exterior calculus framework leads to a conserved diagnostic potential vorticity. In both formulations we show how to construct discretisations that have mass-consistent (constant potential vorticity stays constant), stable and oscillation-free potential vorticity advection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.