Abstract

In this paper, a novel numerical simulation approach based on the finite element method for dynamically modeling the excavation process of shield tunneling is proposed, with the shield-ground interactions well captured. This method is capable of mimicking the alternating modes of advancing and stopping of a shield boring machine during underground construction, with the important effects of the cutterhead rotation and slurry support pressure considered. Under the cutting action, the soil at the excavation face would experience irreversible deformation and damage, such that additional support needs to be provided by the cutterhead blades and slurry to maintain stability. The impacts of key construction parameters are examined, including cutterhead rotary speed, advance rate, and slurry support pressure, on shield tunneling operations and ground responses. The numerical model is rigorously validated against physical model experiments. This work provides useful insights into the mechanistic processes in the stratum during shield tunneling, including the spatiotemporal evolution of ground deformation patterns and stress redistributions. The results offer valuable guidance for optimizing shield tunneling operations and enhancing tunneling safety and efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call