Abstract

The stochastic Landau–Lifshitz–Gilbert (LLG) equation describes the behaviour of the magnetisation under the influence of the effective field containing random fluctuations. We first transform the stochastic LLG equation into a partial differential equation with random coefficients (without the Itô term). The resulting equation has time-differentiable solutions. We then propose a convergent θ-linear scheme for the numerical solution of the reformulated equation. As a consequence, we show the existence of weak martingale solutions to the stochastic LLG equation. A salient feature of this scheme is that it does not involve solving a system of nonlinear algebraic equations, and that no condition on time and space steps is required when θ∈(12,1]. Numerical results are presented to show the applicability of the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.