Abstract

Purpose: To analyse, and compare using finite element analysis, the biomechanical properties of the 1.7 mm miniplate fixation against 2 conventional fixation techniques (2.0 mm bi-cortical screws and 2.0 mm miniplate) used in the mandibular sagittal split osteotomy. Methods: A 3-D virtual mandible model was constructed using images from CT scan. Sagittal split osteotomy was carried out virtually, and the fixation techniques were applied onto the model. 9 virtual models consisted of the 3 fixation techniques with mandibular movements of 3 mm setback, 3 mm advancement and 7 mm advancement were developed. Bite forces of 50, 75 and 100 N were applied for incisor bite simulation and 100, 200 and 300 N for molar biting force. Finite element analysis was carried out in Solidworks, and readings of stresses and displacement were recorded. Wilcoxon rank sum test was applied and P-value of 0.05 was set for statistical analysis. Results: In this manuscript the authors have compared 3 internal fixation techniques in mandibular sagittal split osteotomy. There was a statistically significant difference for both stress and displacement readings between the 1.7 mm miniplate, the 2.0 mm bi-cortical screws and the 2.0 mm miniplate for all mandibular movements. For the 1.7 mm miniplate vs 2.0 mm bi-cortical screws, the stress reading was (P = 3.063e-08, W = 314), and for displacement was (P = 5.811e-05, W = 282). For the 1.7 mm miniplate vs 2.0 mm miniplate, the stress reading was (P = 9.862e-4, W = 263) and for displacement was (2.05e-2, W = 235). Conclusion: The 1.7 mm miniplate has adequate strength to be used in mandibular sagittal split osteotomy, although statistically less rigid when compared to the conventional 2.0 mm miniplate and 2.0 mm bi-cortical screws, especially in larger movements.

Highlights

  • Providing adequate stability after orthognathic surgery is important to minimize complications and relapse

  • Sagittal split osteotomy was carried out virtually, and the fixation techniques were applied onto the model. 9 virtual models consisted of the 3 fixation techniques with mandibular movements of 3 mm setback, 3 mm advancement and 7 mm advancement were developed

  • The fixation techniques used in mandibular orthognathic surgery are usually internal fixation, and over the years have switched from non-rigid wires, to more rigid screws, and titanium miniplates [1] [2]

Read more

Summary

Introduction

Providing adequate stability after orthognathic surgery is important to minimize complications and relapse. The fixation techniques used in mandibular orthognathic surgery are usually internal fixation, and over the years have switched from non-rigid wires, to more rigid screws, and titanium miniplates [1] [2]. The aim of providing stable fixation for the bone segments is to facilitate good bone healing, early mobilization of the jaws, and to prevent relapse [3]. Internal fixation techniques can be classified as rigid, semi-rigid/functionally stable or non-rigid. Bernd Spiessl in 1974 published the use of bi-cortical screws as rigid internal fixation that can prevent relapse in mandibular osteotomies, while Hans Luhr in 1979 introduced the principle of mini-plates in orthognathic surgery [2]. The use of smaller miniplate fixation in mandibular osteotomies is uncommon, but has been reported in the literature [5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call