Abstract

To analyse the effect of ferrule height upon the mechanical resistance and stress distribution within a root to explain variations in the pattern of root fracture. An extracted, intact, caries free, maxillary right central incisor was scanned by laser and then reconstructed on a computer to produce a model of the tooth and associated periodontal ligament. A simulated post/core/crown restoration was constructed on conventional tooth preparations with various ferrules. The crown was loaded with a simulated 500 N force and the simulated displacement of components and the tensile and compressive stress within the tooth structure were recorded. Without a ferrule preparation, the simulated crown tilted to the labial and rotated distally. With increasing ferrule height the displacement and rotation of the crown reduced in conventional and crown-lengthening models with maximum reduction occurring when the ferrule height reached 1.5 mm. In ferrule models, higher levels of tensile stress developed in internal (by a factor of 8) and mid-root palatal (by a factor of 90) dentine at the cervical margin of the preparation. With an increase in ferrule height, the area of tensile stress within the palatal mid-dentine expanded towards the cervical margin. Similar patterns and stress values were recorded for the crown-lengthening models. The study confirms that a ferrule increases the mechanical resistance of a post/core/crown restoration. However a ferrule creates a larger area of palatal dentine under tensile stress that may be a favourable condition for a crack to develop. Crown-lengthening did not alter the levels or pattern of stress within compared with conventional ferrule preparations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.