Abstract

Mesoscale modeling is an emerging analytical method that can be used to study fiber-reinforced concrete. However, fine fibers with micrometer diameters are distributed in millions in a standard specimen, so it is impossible to establish a mesoscale model and further analyze it, which severely limits the investigation of the reinforcement mechanism of fine fibers on concrete. This paper efficiently established a highly applicable mesoscale analytical model for random fiber-polyhedral aggregate concrete in Abaqus software based on a comprehensive examination of the crack bridging law and the supplementation of the fiber spacing theory, combined with the improvement of the algorithms of aggregate generation, fiber arrangement, and the judgment of the fiber-aggregate contact by the secondary development method of Python, as well as the matrix-dual arrangement method. Additionally, basalt fiber concrete and mortar specimens were prepared and tested, and the parameters of the model were calibrated to verify the model's authenticity. The result shows that the method proposed in this paper can accurately and efficiently perform mesoscale concrete analysis with fine fibers. In the peak load stage, the fiber has the strongest alleviation effect (Δ = 0.033) on the matrix damage, 10 times that of the crack initiation stage (Δ = 0.003). With the development of damage, fiber stress increases gradually from the crack initiation stage (0.68 σfu), and the growth rate (41.53 %) is the largest at the peak load stage (σfu), which reveals the complex dynamic bridging effect of fiber on the matrix. This investigation proposes a novel and broad applicability methodology for the finite element analysis of fiber-reinforced aggregate mesoscale concrete.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.