Abstract

A numerical method is developed to study the bimaterial interface problem in Neo-Hookean materials under plane stress conditions. Comparison is made with the analytical predictions for the asymptotic field of the problem. The range of dominance of the asymptotic solution at different load levels is established and the amplitudes of the crack-tip asymptotic field are related to the far field loading. The numerical model is extended to analyze the experiments conducted on specimens with an edge crack at the interface between two dissimilar Solithane plates that are characterized by Mooney-Rivlin material behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.