Abstract
A systematic hybrid approach for modelling the hydraulic fracturing process of heterogeneous rocks with irregular inclusions is developed. This approach is based on a series of computational algorithms, including Fourier series transformation, level-set-based overlapping detection, and the finite-discrete element method. Three major steps are included: (1) circular parameterization and Fourier transformation are employed to reproduce realistic inclusion contours with arbitrary irregular shapes; (2) a novel overlapping detection method based on a level-set function is employed to allocate irregular inclusions effectively and efficiently; and (3) the finite-discrete element model is established by integrating cohesive elements with pore pressure nodes into the solid mesh to simulate the progressive hydraulic fracture and interface crack of heterogeneous rocks. To validate the proposed hybrid approach, modelling results by the established model are compared with numerical simulations in the literature. In addition, the influences of injection speed and interface strength on the mechanical and fracturing responses of heterogeneous rocks are discussed. The results demonstrate that the proposed hybrid approach is capable of simulating the hydraulic fracturing process of heterogeneous rocks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.