Abstract

An efficient numerical technique is proposed to solve one- and two-dimensional space fractional tempered fractional diffusion-wave equations. The space fractional is based on the Riemann–Liouville fractional derivative. At first, the temporal direction is discretized using a second-order accurate difference scheme. Then a classic Galerkin finite element is employed to obtain a full-discrete scheme. Furthermore, for the time-discrete and the full-discrete schemes error estimate has been presented to show the unconditional stability and convergence of the developed numerical method. Finally, two test problems have been illustrated to verify the efficiency and simplicity of the proposed technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call